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INTRODUCTION

Computers play an essential role in our daily life, performing cal-
culations at rates that exceed natural human capability. How-
ever, these extraordinary computers have a number of limita-
tions. One of these limitations is the inability to be able to repre-
sent certain numbers with complete accuracy. A simple number
like 0.1 cannot be represented with complete accuracy within a
computer, which highlights the fact that fast calculations do not
mean accurate calculations. The reason behind this limitation is
that computers operate on the binary number system, using only
a finite number of binary digits to represent any number. As each
binary digit can only have a place value which is a power of 2, it
is not possible to represent every single decimal number using
the binary number system. This means that the computer has to
approximate the values of these decimal numbers while perform-
ing mathematical operations on them, which can lead to certain
unexpected errors in the results of even simple arithmetic calcu-
lations. In our project, we have focused on a very specific arith-
metic calculation and have found an expression to determine the
probability that this calculation disobeys the law of associativity
of addition.

WORKING IN BINARY

1 The Binary Number System

The binary system is a base-2 number system whose digits are
called bits and can either be a 0 or a 1. The place value of each
digit in a binary number is hence a power of 2. This is similar to
how the place value of each digit in a decimal number is a power
of 10.

Figure 1: An example of converting the binary number 1011001 into its decimal counterpart

(1). During the conversion process, the place values of the 1s are added to the running

decimal total while the place values of the 0s are not.

2 Binary Shifts

Binary shifts (or logical shifts) are operations that move all the
bits of a binary number either left or right.

A left shift represents a multiplication by a factor of 2 while a
right shift represents a division by a factor of 2. In this project,
the symbol ≫ used represents a binary right shift.

Performing n number of binary shifts on a binary number pro-
duces n number of empty bit places in the resulting binary num-
ber. Hence, the resultant empty bits are replaced with n number
of zeros.

Figure 2: A visualisation depicting a left and right binary (logical) shift (2). The zeros inserted

into the resulting binary number are the zeros used to fill the empty bit places.

ROUNDING TOWARDS ZERO

Rounding towards zero in floating-point arithmetic refers to trun-
cating a floating-point result to produce an integer result. This is
one of the methods of handling overflow and underflow in a com-
puter, preventing it from crashing, but this will generate an error
in the result. In this project, the symbols +̂ and −̂ are used to
represent round-towards-zero addition and round-towards-zero
subtraction respectively.

Some examples of round-towards-zero addition and round-
towards-zero subtraction are as follows:

8.9 +̂ 6.7 = 15

8.7 −̂ 6.9 = 1.

UNDERFLOW

Every binary number in a computer is allocated a specific bit-
length. Therefore, performing a binary shift will truncate any
bits that have been shifted beyond the highest or the lowest
operable bit position. This can be seen in Figure 2 where
the leading 0 has been truncated after the left shift and the
trailing 1 has been truncated after the right shift.

Considering the 4-bit long binary number 1111 (155 in deci-
mal), a right shift would produce a 5-bit long binary number
0111.1 which contains a binary point. The last bit of this bi-
nary number (which is a 1) is now beyond the lowest operable
bit position, and produces a situation called underflow. In or-
der to handle the underflow, the computer will truncate any
bits that are beyond the lowest operable bit position. This
would result in the binary number 0111 (7 in decimal). So,
the right shift produces a small inaccuracy in the result for the
half of 15. This inaccuracy is what causes the unexpected er-
rors in the results of arithmetic calculations.

Figure 3: A visualisation depicting a right binary shift by one bit. This right binary shift

produces an underflow, which has been handled by truncating the last bit which is now

beyond the lowest operable bit position. Key: MOB refers to ‘Most Operable Bit’ and

LOB refers to ‘Least Operable Bit’.

THE FLOATING-POINT PROBLEM

The floating-point representation of numbers is used to rep-
resent real numbers in a way that supports a wide range of
values, including large numbers and fractional values, while
using a relatively smaller number of bits compared to the
standard binary format. The floating-point format for a posi-
tive real number is as follows:

1.mantissa× 2exponent.

The floating-point representation of numbers can also be col-
loquially referred to as ‘Binary Standard Form’. Our report
delves deeper into how the floating-point representation of
numbers can be understood.

In this project, we have focused on finding an expression for
the probability that the following floating-point inequality is
true:

(CF +̂BF )−̂AF ̸= CF +̂ (BF −̂AF ).

This is a rather complex floating-point problem, which we
have decomposed into six simplified integer problems. The
floating-point numbers AF , BF and CF have been converted
into the integers A, B and C by replacing the idea of expo-
nents in the floating-point numbers with the variables m, h
and k.

Figure 4: A visualisation depicting the integers A, B and C after the integers A and B

have been right shifted by h and k bits respectively.

SIMPLIFIED INTEGER PROBLEMS

AND RESULTS

The six simplified integer problems and the expressions for
their probabilities have been listed as follows:

1. P (C +̂ B1 < 2m+1 |m, k) = 1− 3(2−k−1) + 2−m−1

2. P (B2 < A2 | h, k) = 2−1 + 2−k−1 − 2−h

3. P (C +̂B1 −̂ (A ≫ h) < 2m+1 |m,h, k)
= 1− 3(2−k−1) + 3(2−h−1)− 2−m−h + 2−m

4. P (A2 > 0 | h) = 1− 2−h

5. P (bk ̸= c0) = 2−1

6. P (ah = 0) = 2−1.

The solution for the integer problem statement that we had
derived from the floating-point inequality is included in our
report. See our report for the full solutions to the simplified
integer problems.

METHODS

In order to solve the simplified integer problems, we pro-
duced a specific type of diagram that we refer to as a graph.
These graphs can be used to determine the probability that
a specific simplified integer problem is true. The following
graph can be used to calculate the probability that the first
simplified integer problem is true for the base case where
m = 3 and k = 1:

Figure 5: This is a graph that represents the base case for the first simplified integer

problem where m = 3 and k = 1. Each box on the grid represents its corresponding C

value added to its corresponding B1 value. The green boxes represent the events

where C +̂B1 < 2m+1, while the white boxes represent the events where

C +̂B1 ≥ 2m+1.

Using this graph, we can determine the probability that
C +̂B1 < 2m+1 where m = 3 and k = 1 as the number of
green boxes divided by the total number of boxes present on
the graph as follows:

P (C +̂B1 < 2m+1) = P (C +̂B1 < 16) =
10

32
=

5

16
.

This is the fundamental method that we have used to solve
the simplified integer problems in our project.

CONCLUSION

We have been working on this project for a duration of over
5 months and have certainly come a long way. Not only has
this project expanded our mathematical skills, but it has also
improved our collaboration skills. In conclusion, this project
has made us passionate for a new field of computer science.
We hope that we will have future opportunities to work on a
project like this.
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